A Law of Robustness for Weight-bounded Neural Networks

16 Feb 2021  ·  Hisham Husain, Borja Balle ·

Robustness of deep neural networks against adversarial perturbations is a pressing concern motivated by recent findings showing the pervasive nature of such vulnerabilities. One method of characterizing the robustness of a neural network model is through its Lipschitz constant, which forms a robustness certificate. A natural question to ask is, for a fixed model class (such as neural networks) and a dataset of size $n$, what is the smallest achievable Lipschitz constant among all models that fit the dataset? Recently, (Bubeck et al., 2020) conjectured that when using two-layer networks with $k$ neurons to fit a generic dataset, the smallest Lipschitz constant is $\Omega(\sqrt{\frac{n}{k}})$. This implies that one would require one neuron per data point to robustly fit the data. In this work we derive a lower bound on the Lipschitz constant for any arbitrary model class with bounded Rademacher complexity. Our result coincides with that conjectured in (Bubeck et al., 2020) for two-layer networks under the assumption of bounded weights. However, due to our result's generality, we also derive bounds for multi-layer neural networks, discovering that one requires $\log n$ constant-sized layers to robustly fit the data. Thus, our work establishes a law of robustness for weight bounded neural networks and provides formal evidence on the necessity of over-parametrization in deep learning.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here