A Locally Adaptive Normal Distribution

The multivariate normal density is a monotonic function of the distance to the mean, and its ellipsoidal shape is due to the underlying Euclidean metric. We suggest to replace this metric with a locally adaptive, smoothly changing (Riemannian) metric that favors regions of high local density. The resulting locally adaptive normal distribution (LAND) is a generalization of the normal distribution to the "manifold" setting, where data is assumed to lie near a potentially low-dimensional manifold embedded in $\mathbb{R}^D$. The LAND is parametric, depending only on a mean and a covariance, and is the maximum entropy distribution under the given metric. The underlying metric is, however, non-parametric. We develop a maximum likelihood algorithm to infer the distribution parameters that relies on a combination of gradient descent and Monte Carlo integration. We further extend the LAND to mixture models, and provide the corresponding EM algorithm. We demonstrate the efficiency of the LAND to fit non-trivial probability distributions over both synthetic data, and EEG measurements of human sleep.

PDF Abstract NeurIPS 2016 PDF NeurIPS 2016 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here