A Machine Learning Approach for Virtual Flow Metering and Forecasting

15 Feb 2018  ·  Nikolai Andrianov ·

We are concerned with robust and accurate forecasting of multiphase flow rates in wells and pipelines during oil and gas production. In practice, the possibility to physically measure the rates is often limited; besides, it is desirable to estimate future values of multiphase rates based on the previous behavior of the system... In this work, we demonstrate that a Long Short-Term Memory (LSTM) recurrent artificial network is able not only to accurately estimate the multiphase rates at current time (i.e., act as a virtual flow meter), but also to forecast the rates for a sequence of future time instants. For a synthetic severe slugging case, LSTM forecasts compare favorably with the results of hydrodynamical modeling. LSTM results for a realistic noizy dataset of a variable rate well test show that the model can also successfully forecast multiphase rates for a system with changing flow patterns. read more

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods