A Majorization-Minimization Gauss-Newton Method for 1-Bit Matrix Completion

27 Apr 2023  ·  Xiaoqian Liu, Xu Han, Eric C. Chi, Boaz Nadler ·

In 1-bit matrix completion, the aim is to estimate an underlying low-rank matrix from a partial set of binary observations. We propose a novel method for 1-bit matrix completion called MMGN. Our method is based on the majorization-minimization (MM) principle, which converts the original optimization problem into a sequence of standard low-rank matrix completion problems. We solve each of these sub-problems by a factorization approach that explicitly enforces the assumed low-rank structure and then apply a Gauss-Newton method. Using simulations and a real data example, we illustrate that in comparison to existing 1-bit matrix completion methods, MMGN outputs comparable if not more accurate estimates. In addition, it is often significantly faster, and less sensitive to the spikiness of the underlying matrix. In comparison with three standard generic optimization approaches that directly minimize the original objective, MMGN also exhibits a clear computational advantage, especially when the fraction of observed entries is small.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here