A mechanistic-based data-driven approach to accelerate structural topology optimization through finite element convolutional neural network (FE-CNN)

25 Jun 2021  ·  Tianle Yue, Hang Yang, Zongliang Du, Chang Liu, Khalil I. Elkhodary, Shan Tang, Xu Guo ·

In this paper, a mechanistic data-driven approach is proposed to accelerate structural topology optimization, employing an in-house developed finite element convolutional neural network (FE-CNN). Our approach can be divided into two stages: offline training, and online optimization. During offline training, a mapping function is built between high and low resolution representations of a given design domain. The mapping is expressed by a FE-CNN, which targets a common objective function value (e.g., structural compliance) across design domains of differing resolutions. During online optimization, an arbitrary design domain of high resolution is reduced to low resolution through the trained mapping function. The original high-resolution domain is thus designed by computations performed on only the low-resolution version, followed by an inverse mapping back to the high-resolution domain. Numerical examples demonstrate that this approach can accelerate optimization by up to an order of magnitude in computational time. Our proposed approach therefore shows great potential to overcome the curse-of-dimensionality incurred by density-based structural topology optimization. The limitation of our present approach is also discussed.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here