A Multi-Stage Supply Chain Network Optimization Using Genetic Algorithms

4 Aug 2014  ·  Nelson Christopher Dzupire, Yaw Nkansah-Gyekye ·

In today's global business market place, individual firms no longer compete as independent entities with unique brand names but as integral part of supply chain links. Key to success of any business is satisfying customer's demands on time which may result in cost reductions and increase in service level... In supply chain networks decisions are made with uncertainty about product's demands, costs, prices, lead times, quality in a competitive and collaborative environment. If poor decisions are made, they may lead to excess inventories that are costly or to insufficient inventory that cannot meet customer's demands. In this work we developed a bi-objective model that minimizes system wide costs of the supply chain and delays on delivery of products to distribution centers for a three echelon supply chain. Picking a set of Pareto front for multi-objective optimization problems require robust and efficient methods that can search an entire space. We used evolutionary algorithms to find the set of Pareto fronts which have proved to be effective in finding the entire set of Pareto fronts. read more

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here