A Multi-View Sentiment Corpus

Sentiment Analysis is a broad task that involves the analysis of various aspect of the natural language text. However, most of the approaches in the state of the art usually investigate independently each aspect, i.e. Subjectivity Classification, Sentiment Polarity Classification, Emotion Recognition, Irony Detection... In this paper we present a Multi-View Sentiment Corpus (MVSC), which comprises 3000 English microblog posts related the movie domain. Three independent annotators manually labelled MVSC, following a broad annotation schema about different aspects that can be grasped from natural language text coming from social networks. The contribution is therefore a corpus that comprises five different views for each message, i.e. subjective/objective, sentiment polarity, implicit/explicit, irony, emotion. In order to allow a more detailed investigation on the human labelling behaviour, we provide the annotations of each human annotator involved. read more

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here