A Neural Network-Evolutionary Computational Framework for Remaining Useful Life Estimation of Mechanical Systems

15 May 2019  ·  David Laredo, Zhaoyin Chen, Oliver Schütze, Jian-Qiao Sun ·

This paper presents a framework for estimating the remaining useful life (RUL) of mechanical systems. The framework consists of a multi-layer perceptron and an evolutionary algorithm for optimizing the data-related parameters. The framework makes use of a strided time window to estimate the RUL for mechanical components. Tuning the data-related parameters can become a very time consuming task. The framework presented here automatically reshapes the data such that the efficiency of the model is increased. Furthermore, the complexity of the model is kept low, e.g. neural networks with few hidden layers and few neurons at each layer. Having simple models has several advantages like short training times and the capacity of being in environments with limited computational resources such as embedded systems. The proposed method is evaluated on the publicly available C-MAPSS dataset, its accuracy is compared against other state-of-the art methods for the same dataset.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here