A new approach to template banks of gravitational waves with higher harmonics: reducing matched-filtering cost by over an order of magnitude

Searches for gravitational wave events use models, or templates, for the signals of interest. The templates used in current searches in the LIGO-Virgo-Kagra (LVK) data model the dominant quadrupole mode $(\ell,m)=(2,2)$ of the signals, and omit sub-dominant higher-order modes (HM) such as $(\ell,m)=(3,3)$, $(4,4)$, which are predicted by general relativity. Hence, these searches could lose sensitivity to black hole mergers in interesting parts of parameter space, such as systems with high-masses and asymmetric mass ratios. We develop a new strategy to include HM in template banks that exploits the natural connection between the modes. We use a combination of post-Newtonian formulae and machine learning tools to model aligned-spin $(3,3)$, $(4,4)$ waveforms corresponding to a given $(2,2)$ waveform. Each of these modes can be individually filtered against the data to yield separate timeseries of signal-to-noise ratios (SNR), which can be combined in a relatively inexpensive way to marginalize over extrinsic parameters of the signals. This leads to a HM search pipeline whose matched-filtering cost is just $\approx 3\times$ that of a quadrupole-only search (in contrast to being $\approx\! 100 \times$, as in previously proposed HM search methods). Our method is effectual and is generally applicable for template banks constructed with either stochastic or geometric placement techniques. Additionally, we discuss compression of $(2,2)$-only geometric-placement template banks using machine learning algorithms.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here