A New Framework for Multi-Agent Reinforcement Learning -- Centralized Training and Exploration with Decentralized Execution via Policy Distillation

21 Oct 2019  ·  Gang Chen ·

Deep reinforcement learning (DRL) is a booming area of artificial intelligence. Many practical applications of DRL naturally involve more than one collaborative learners, making it important to study DRL in a multi-agent context. Previous research showed that effective learning in complex multi-agent systems demands for highly coordinated environment exploration among all the participating agents. Many researchers attempted to cope with this challenge through learning centralized value functions. However, the common strategy for every agent to learn their local policies directly often fail to nurture strong inter-agent collaboration and can be sample inefficient whenever agents alter their communication channels. To address these issues, we propose a new framework known as centralized training and exploration with decentralized execution via policy distillation. Guided by this framework and the maximum-entropy learning technique, we will first train agents' policies with shared global component to foster coordinated and effective learning. Locally executable policies will be derived subsequently from the trained global policies via policy distillation. Experiments show that our new framework and algorithm can achieve significantly better performance and higher sample efficiency than a cutting-edge baseline on several multi-agent DRL benchmarks.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here