A new hybrid approach for crude oil price forecasting: Evidence from multi-scale data

22 Feb 2020  ·  Yang Yifan, Guo Ju'e, Sun Shaolong, Li Yixin ·

Faced with the growing research towards crude oil price fluctuations influential factors following the accelerated development of Internet technology, accessible data such as Google search volume index are increasingly quantified and incorporated into forecasting approaches. In this paper, we apply multi-scale data that including both GSVI data and traditional economic data related to crude oil price as independent variables and propose a new hybrid approach for monthly crude oil price forecasting. This hybrid approach, based on divide and conquer strategy, consists of K-means method, kernel principal component analysis and kernel extreme learning machine , where K-means method is adopted to divide input data into certain clusters, KPCA is applied to reduce dimension, and KELM is employed for final crude oil price forecasting. The empirical result can be analyzed from data and method levels. At the data level, GSVI data perform better than economic data in level forecasting accuracy but with opposite performance in directional forecasting accuracy because of Herd Behavior, while hybrid data combined their advantages and obtain best forecasting performance in both level and directional accuracy. At the method level, the approaches with K-means perform better than those without K-means, which demonstrates that divide and conquer strategy can effectively improve the forecasting performance.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here