A new perspective of paramodulation complexity by solving massive 8 puzzles

15 Dec 2020  ·  Ruo Ando, Yoshiyasu Takefuji ·

A sliding puzzle is a combination puzzle where a player slide pieces along certain routes on a board to reach a certain end-configuration. In this paper, we propose a novel measurement of complexity of massive sliding puzzles with paramodulation which is an inference method of automated reasoning. It turned out that by counting the number of clauses yielded with paramodulation, we can evaluate the difficulty of each puzzle. In experiment, we have generated 100 * 8 puzzles which passed the solvability checking by countering inversions. By doing this, we can distinguish the complexity of 8 puzzles with the number of generated with paramodulation. For example, board [2,3,6,1,7,8,5,4, hole] is the easiest with score 3008 and board [6,5,8,7,4,3,2,1, hole] is the most difficult with score 48653. Besides, we have succeeded to obverse several layers of complexity (the number of clauses generated) in 100 puzzles. We can conclude that proposal method can provide a new perspective of paramodulation complexity concerning sliding block puzzles.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here