A new self-exciting jump-diffusion process for option pricing

26 May 2022  ·  Luis A. Souto Arias, Pasquale Cirillo, Cornelis W. Oosterlee ·

We propose a new jump-diffusion process, the Heston-Queue-Hawkes (HQH) model, combining the well-known Heston model and the recently introduced Queue-Hawkes (Q-Hawkes) jump process. Like the Hawkes process, the HQH model can capture the effects of self-excitation and contagion. However, since the characteristic function of the HQH process is known in closed-form, Fourier-based fast pricing algorithms, like the COS method, can be fully exploited with this model. Furthermore, we show that by using partial integrals of the characteristic function, which are also explicitly known for the HQH process, we can reduce the dimensionality of the COS method, and so its numerical complexity. Numerical results for European and Bermudan options show that the HQH model offers a wider range of volatility smiles compared to the Bates model, while its computational burden is considerably smaller than that of the Heston-Hawkes (HH) process.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here