A New Spectral Method for Latent Variable Models

This paper presents an algorithm for the unsupervised learning of latent variable models from unlabeled sets of data. We base our technique on spectral decomposition, providing a technique that proves to be robust both in theory and in practice... (read more)

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
LDA
Dimensionality Reduction