A Non-Parametric Approach to Dynamic Programming

NeurIPS 2011  ·  Oliver B. Kroemer, Jan R. Peters ·

In this paper, we consider the problem of policy evaluation for continuous-state systems. We present a non-parametric approach to policy evaluation, which uses kernel density estimation to represent the system. The true form of the value function for this model can be determined, and can be computed using Galerkin's method. Furthermore, we also present a unified view of several well-known policy evaluation methods. In particular, we show that the same Galerkin method can be used to derive Least-Squares Temporal Difference learning, Kernelized Temporal Difference learning, and a discrete-state Dynamic Programming solution, as well as our proposed method. In a numerical evaluation of these algorithms, the proposed approach performed better than the other methods.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here