A non-parametric conditional factor regression model for high-dimensional input and response

2 Jul 2013  ·  Ava Bargi, Richard Yi Da Xu, Massimo Piccardi ·

In this paper, we propose a non-parametric conditional factor regression (NCFR)model for domains with high-dimensional input and response. NCFR enhances linear regression in two ways: a) introducing low-dimensional latent factors leading to dimensionality reduction and b) integrating an Indian Buffet Process as a prior for the latent factors to derive unlimited sparse dimensions. Experimental results comparing NCRF to several alternatives give evidence to remarkable prediction performance.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here