A Note on a Tight Lower Bound for MNL-Bandit Assortment Selection Models

18 Sep 2017Xi ChenYining Wang

In this short note we consider a dynamic assortment planning problem under the capacitated multinomial logit (MNL) bandit model. We prove a tight lower bound on the accumulated regret that matches existing regret upper bounds for all parameters (time horizon $T$, number of items $N$ and maximum assortment capacity $K$) up to logarithmic factors... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet