A Note on High-Probability Analysis of Algorithms with Exponential, Sub-Gaussian, and General Light Tails

5 Mar 2024  ·  Amit Attia, Tomer Koren ·

This short note describes a simple technique for analyzing probabilistic algorithms that rely on a light-tailed (but not necessarily bounded) source of randomization. We show that the analysis of such an algorithm can be reduced, in a black-box manner and with only a small loss in logarithmic factors, to an analysis of a simpler variant of the same algorithm that uses bounded random variables and often easier to analyze. This approach simultaneously applies to any light-tailed randomization, including exponential, sub-Gaussian, and more general fast-decaying distributions, without needing to appeal to specialized concentration inequalities. Analyses of a generalized Azuma inequality and stochastic optimization with general light-tailed noise are provided to illustrate the technique.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here