A Novel Alternative Optimization Method for Joint Power and Trajectory Design in UAV-Enabled Wireless Network

10 Mar 2020  ·  Tang Hongying, Wu Qingqing, Xu Jing, Chen Wen, Baoqing~Li ·

This letter aims to maximize the average throughput via the joint design of the transmit power and trajectory for unmanned aerial vehicle (UAV)-enabled network. The conventional way to tackle this problem is based on the alternating optimization (AO) method by iteratively updating power and trajectory until convergence, resulting in a non-convex trajectory subproblem which is difficult to deal with. To develop more efficient methods, we propose a novel AO method by incorporating both power and trajectory into an intermediate variable, and then iteratively updating power and the newly introduced variable. This novel variable transformation makes it easier to decompose the original problem into two convex subproblems, namely a throughput maximization subproblem and a feasibility subproblem. Consequently, both of these subproblems can be solved in a globally optimal fashion. We further propose a low-complexity algorithm for the feasibility subproblem by exploiting the alternating directional method of multipliers (ADMM), whose updating step is performed in closed-form solutions. Simulation results demonstrate that our proposed method reduces the computation time by orders of magnitude, while achieving higher performance than the conventional methods.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here