A Novel Feeder-level Microgrid Unit Commitment Algorithm Considering Cold-load Pickup, Phase Balancing, and Reconfiguration

This paper presents a novel 2-stage microgrid unit commitment (Microgrid-UC) algorithm considering cold-load pickup (CLPU) effects, three-phase load balancing requirements, and feasible reconfiguration options. Microgrid-UC schedules the operation of switches, generators, battery energy storage systems, and demand response resources to supply 3-phase unbalanced loads in an islanded microgrid for multiple days. A performance-based CLPU model is developed to estimate additional energy needs of CLPU so that CLPU can be formulated into the traditional 2-stage UC scheduling process. A per-phase demand response budget term is added to the 1st stage UC objective function to meet 3-phase load unbalance limits. To reduce computational complexity in the 1st stage UC, we replace the spanning tree method with a feasible reconfiguration topology list method. The proposed algorithm is developed on a modified IEEE 123-bus system and tested on the real-time simulation testbed using actual load and PV data. Simulation results show that Microgrid-UC successfully accounts for CLPU, phase imbalance, and feeder reconfiguration requirements.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here