A pathway-based kernel boosting method for sample classification using genomic data

11 Mar 2018  ·  Li Zeng, Zhaolong Yu, Hongyu Zhao ·

The analysis of cancer genomic data has long suffered "the curse of dimensionality". Sample sizes for most cancer genomic studies are a few hundreds at most while there are tens of thousands of genomic features studied... Various methods have been proposed to leverage prior biological knowledge, such as pathways, to more effectively analyze cancer genomic data. Most of the methods focus on testing marginal significance of the associations between pathways and clinical phenotypes. They can identify relevant pathways, but do not involve predictive modeling. In this article, we propose a Pathway-based Kernel Boosting (PKB) method for integrating gene pathway information for sample classification, where we use kernel functions calculated from each pathway as base learners and learn the weights through iterative optimization of the classification loss function. We apply PKB and several competing methods to three cancer studies with pathological and clinical information, including tumor grade, stage, tumor sites, and metastasis status. Our results show that PKB outperforms other methods, and identifies pathways relevant to the outcome variables. read more

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here