A Practical Beamforming Design for Active RIS-assisted MU-MISO Systems

8 Jan 2024  ·  Yun Yang, Zhiping Lu, Ming Li, Rang Liu, Qian Liu ·

Reconfigurable Intelligent Surfaces (RIS) have been proposed as a revolutionary technology with the potential to address several critical requirements of 6G communication systems. Despite its powerful ability for radio environment reconfiguration, the ``double fading'' effect constricts the practical system performance enhancements due to the significant path loss. A new active RIS architecture has been recently proposed to overcome this challenge. However, existing active RIS studies rely on an ideal amplification model without considering the practical hardware limitation of amplifiers, which may cause performance degradation using such inaccurate active RIS modeling. Motivated by this fact, in this paper we first investigate the amplification principle of typical active RIS and propose a more accurate amplification model based on amplifier hardware characteristics. Then, based on the new amplification model, we propose a novel joint transmit beamforming and RIS reflection beamforming design considering the incident signal power on practical active RIS for multiuser multi-input single-output (MU-MISO) communication system. Fractional programming (FP), majorization minimization (MM) and block coordinate descent (BCD) methods are used to solve for the complex problem. Simulation results indicate the importance of the consideration of practical amplifier hardware characteristics in the joint beamforming designs and demonstrate the effectiveness of the proposed algorithm compared to other benchmarks.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here