A Predictive On-Demand Placement of UAV Base Stations Using Echo State Network

25 Sep 2019  ·  Haoran Peng, Chao Chen, Chuan-Chi Lai, Li-Chun Wang, Zhu Han ·

The unmanned aerial vehicles base stations (UAV-BSs) have great potential in being widely used in many dynamic application scenarios. In those scenarios, the movements of served user equipments (UEs) are inevitable, so the UAV-BSs needs to be re-positioned dynamically for providing seamless services. In this paper, we propose a system framework consisting of UEs clustering, UAV-BS placement, UEs trajectories prediction, and UAV-BS reposition matching scheme, to serve the UEs seamlessly as well as minimize the energy cost of UAV-BSs' reposition trajectories. An Echo State Network (ESN) based algorithm for predicting the future trajectories of UEs and a Kuhn-Munkres-based algorithm for finding the energy-efficient reposition trajectories of UAV-BSs is designed, respectively. We conduct a simulation using a real open dataset for performance validation. The simulation results indicate that the proposed framework achieves high prediction accuracy and provides the energy-efficient matching scheme.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here