A Proximal Algorithm for Sampling from Non-convex Potentials

20 May 2022  ·  Jiaming Liang, Yongxin Chen ·

We study sampling problems associated with non-convex potentials that meanwhile lack smoothness. In particular, we consider target distributions that satisfy either logarithmic-Sobolev inequality or Poincar\'e inequality. Rather than smooth, the potentials are assumed to be semi-smooth or the summation of multiple semi-smooth functions. We develop a sampling algorithm that resembles proximal algorithms in optimization for this challenging sampling task. Our algorithm is based on a special case of Gibbs sampling known as the alternating sampling framework (ASF). The key contribution of this work is a practical realization of the ASF based on rejection sampling in the non-convex and semi-smooth setting. This work extends the recent algorithm in \cite{LiaChe21,LiaChe22} for non-smooth/semi-smooth log-concave distribution to the setting with non-convex potentials. In almost all the cases of sampling considered in this work, our proximal sampling algorithm achieves better complexity than all existing methods.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here