A Quick Review on Recent Trends in 3D Point Cloud Data Compression Techniques and the Challenges of Direct Processing in 3D Compressed Domain

8 Jul 2020Mohammed JavedMD MerazPavan Chakraborty

Automatic processing of 3D Point Cloud data for object detection, tracking and segmentation is the latest trending research in the field of AI and Data Science, which is specifically aimed at solving different challenges of autonomous driving cars and getting real time performance. However, the amount of data that is being produced in the form of 3D point cloud (with LiDAR) is very huge, due to which the researchers are now on the way inventing new data compression algorithms to handle huge volumes of data thus generated... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet