A Randomized Algorithm for CCA

13 Nov 2014  ·  Paul Mineiro, Nikos Karampatziakis ·

We present RandomizedCCA, a randomized algorithm for computing canonical analysis, suitable for large datasets stored either out of core or on a distributed file system. Accurate results can be obtained in as few as two data passes, which is relevant for distributed processing frameworks in which iteration is expensive (e.g., Hadoop)... The strategy also provides an excellent initializer for standard iterative solutions. read more

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here