A Reading Comprehension Corpus for Machine Translation Evaluation

Effectively assessing Natural Language Processing output tasks is a challenge for research in the area. In the case of Machine Translation (MT), automatic metrics are usually preferred over human evaluation, given time and budget constraints.However, traditional automatic metrics (such as BLEU) are not reliable for absolute quality assessment of documents, often producing similar scores for documents translated by the same MT system.For scenarios where absolute labels are necessary for building models, such as document-level Quality Estimation, these metrics can not be fully trusted... (read more)

PDF Abstract LREC 2016 PDF LREC 2016 Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet