A review of homomorphic encryption and software tools for encrypted statistical machine learning

26 Aug 2015Louis J. M. AslettPedro M. EsperançaChris C. Holmes

Recent advances in cryptography promise to enable secure statistical computation on encrypted data, whereby a limited set of operations can be carried out without the need to first decrypt. We review these homomorphic encryption schemes in a manner accessible to statisticians and machine learners, focusing on pertinent limitations inherent in the current state of the art... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet