A Risk Minimization Principle for a Class of Parzen Estimators

This paper explores the use of a Maximal Average Margin (MAM) optimality principle for the design of learning algorithms. It is shown that the application of this risk minimization principle results in a class of (computationally) simple learning machines similar to the classical Parzen window classifier... A direct relation with the Rademacher complexities is established, as such facilitating analysis and providing a notion of certainty of prediction. This analysis is related to Support Vector Machines by means of a margin transformation. The power of the MAM principle is illustrated further by application to ordinal regression tasks, resulting in an $O(n)$ algorithm able to process large datasets in reasonable time. read more

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here