A Self-Play Posterior Sampling Algorithm for Zero-Sum Markov Games

4 Oct 2022  ·  Wei Xiong, Han Zhong, Chengshuai Shi, Cong Shen, Tong Zhang ·

Existing studies on provably efficient algorithms for Markov games (MGs) almost exclusively build on the "optimism in the face of uncertainty" (OFU) principle. This work focuses on a different approach of posterior sampling, which is celebrated in many bandits and reinforcement learning settings but remains under-explored for MGs. Specifically, for episodic two-player zero-sum MGs, a novel posterior sampling algorithm is developed with general function approximation. Theoretical analysis demonstrates that the posterior sampling algorithm admits a $\sqrt{T}$-regret bound for problems with a low multi-agent decoupling coefficient, which is a new complexity measure for MGs, where $T$ denotes the number of episodes. When specialized to linear MGs, the obtained regret bound matches the state-of-the-art results. To the best of our knowledge, this is the first provably efficient posterior sampling algorithm for MGs with frequentist regret guarantees, which enriches the toolbox for MGs and promotes the broad applicability of posterior sampling.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here