Higher-order Expansions and Inference for Panel Data Models

1 May 2022  ·  Jiti Gao, Bin Peng, Yayi Yan ·

In this paper, we propose a simple inferential method for a wide class of panel data models with a focus on such cases that have both serial correlation and cross-sectional dependence. In order to establish an asymptotic theory to support the inferential method, we develop some new and useful higher-order expansions, such as Berry-Esseen bound and Edgeworth Expansion, under a set of simple and general conditions. We further demonstrate the usefulness of these theoretical results by explicitly investigating a panel data model with interactive effects which nests many traditional panel data models as special cases. Finally, we show the superiority of our approach over several natural competitors using extensive numerical studies.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here