A simple discriminative training method for machine translation with large-scale features

15 Sep 2019  ·  Tian Xia, Shaodan Zhai, Shaojun Wang ·

Margin infused relaxed algorithms (MIRAs) dominate model tuning in statistical machine translation in the case of large scale features, but also they are famous for the complexity in implementation. We introduce a new method, which regards an N-best list as a permutation and minimizes the Plackett-Luce loss of ground-truth permutations. Experiments with large-scale features demonstrate that, the new method is more robust than MERT; though it is only matchable with MIRAs, it has a comparatively advantage, easier to implement.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here