A Smart Sliding Chinese Pinyin Input Method Editor on Touchscreen

3 Sep 2019  ·  Zhuosheng Zhang, Zhen Meng, Hai Zhao ·

This paper presents a smart sliding Chinese pinyin Input Method Editor (IME) for touchscreen devices which allows user finger sliding from one key to another on the touchscreen instead of tapping keys one by one, while the target Chinese character sequence will be predicted during the sliding process to help user input Chinese characters efficiently. Moreover, the layout of the virtual keyboard of our IME adapts to user sliding for more efficient inputting. The layout adaption process is utilized with Recurrent Neural Networks (RNN) and deep reinforcement learning. The pinyin-to-character converter is implemented with a sequence-to-sequence (Seq2Seq) model to predict the target Chinese sequence. A sliding simulator is built to automatically produce sliding samples for model training and virtual keyboard test. The key advantage of our proposed IME is that nearly all its built-in tactics can be optimized automatically with deep learning algorithms only following user behavior. Empirical studies verify the effectiveness of the proposed model and show a better user input efficiency.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here