A Spiking Neural Network with Local Learning Rules Derived From Nonnegative Similarity Matching

4 Feb 2019  ·  Cengiz Pehlevan ·

The design and analysis of spiking neural network algorithms will be accelerated by the advent of new theoretical approaches. In an attempt at such approach, we provide a principled derivation of a spiking algorithm for unsupervised learning, starting from the nonnegative similarity matching cost function. The resulting network consists of integrate-and-fire units and exhibits local learning rules, making it biologically plausible and also suitable for neuromorphic hardware. We show in simulations that the algorithm can perform sparse feature extraction and manifold learning, two tasks which can be formulated as nonnegative similarity matching problems.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here