A Stability Principle for Learning under Non-Stationarity

27 Oct 2023  ·  Chengpiao Huang, Kaizheng Wang ·

We develop a versatile framework for statistical learning in non-stationary environments. In each time period, our approach applies a stability principle to select a look-back window that maximizes the utilization of historical data while keeping the cumulative bias within an acceptable range relative to the stochastic error. Our theory showcases the adaptability of this approach to unknown non-stationarity. The regret bound is minimax optimal up to logarithmic factors when the population losses are strongly convex, or Lipschitz only. At the heart of our analysis lie two novel components: a measure of similarity between functions and a segmentation technique for dividing the non-stationary data sequence into quasi-stationary pieces.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here