A Stochastic Subgradient Method for Distributionally Robust Non-Convex Learning

8 Jun 2020  ·  Mert Gürbüzbalaban, Andrzej Ruszczyński, Landi Zhu ·

We consider a distributionally robust formulation of stochastic optimization problems arising in statistical learning, where robustness is with respect to uncertainty in the underlying data distribution. Our formulation builds on risk-averse optimization techniques and the theory of coherent risk measures. It uses semi-deviation risk for quantifying uncertainty, allowing us to compute solutions that are robust against perturbations in the population data distribution. We consider a large family of loss functions that can be non-convex and non-smooth and develop an efficient stochastic subgradient method. We prove that it converges to a point satisfying the optimality conditions. To our knowledge, this is the first method with rigorous convergence guarantees in the context of non-convex non-smooth distributionally robust stochastic optimization. Our method can achieve any desired level of robustness with little extra computational cost compared to population risk minimization. We also illustrate the performance of our algorithm on real datasets arising in convex and non-convex supervised learning problems.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here