A Study of Incorrect Paraphrases in Crowdsourced User Utterances

Developing bots demands highquality training samples, typically in the form of user utterances and their associated intents. Given the fuzzy nature of human language, such datasets ideally must cover all possible utterances of each single intent. Crowdsourcing has widely been used to collect such inclusive datasets by paraphrasing an initial utterance. However, the quality of this approach often suffers from various issues, particularly language errors produced by unqualified crowd workers. More so, since workers are tasked to write open-ended text, it is very challenging to automatically asses the quality of paraphrased utterances. In this paper, we investigate common crowdsourced paraphrasing issues, and propose an annotated dataset called Para-Quality, for detecting the quality issues. We also investigate existing tools and services to provide baselines for detecting each category of issues. In all, this work presents a data-driven view of incorrect paraphrases during the bot development process, and we pave the way towards automatic detection of unqualified paraphrases.

PDF Abstract


Introduced in the Paper:


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here