A Study of MatchPyramid Models on Ad-hoc Retrieval

15 Jun 2016  ·  Liang Pang, Yanyan Lan, Jiafeng Guo, Jun Xu, Xue-Qi Cheng ·

Deep neural networks have been successfully applied to many text matching tasks, such as paraphrase identification, question answering, and machine translation. Although ad-hoc retrieval can also be formalized as a text matching task, few deep models have been tested on it. In this paper, we study a state-of-the-art deep matching model, namely MatchPyramid, on the ad-hoc retrieval task. The MatchPyramid model employs a convolutional neural network over the interactions between query and document to produce the matching score. We conducted extensive experiments to study the impact of different pooling sizes, interaction functions and kernel sizes on the retrieval performance. Finally, we show that the MatchPyramid models can significantly outperform several recently introduced deep matching models on the retrieval task, but still cannot compete with the traditional retrieval models, such as BM25 and language models.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here