A Survey on Deep Learning for Theorem Proving

15 Apr 2024  ·  Zhaoyu Li, Jialiang Sun, Logan Murphy, Qidong Su, Zenan Li, Xian Zhang, Kaiyu Yang, Xujie Si ·

Theorem proving is a fundamental aspect of mathematics, spanning from informal reasoning in mathematical language to rigorous derivations in formal systems. In recent years, the advancement of deep learning, especially the emergence of large language models, has sparked a notable surge of research exploring these techniques to enhance the process of theorem proving. This paper presents a pioneering comprehensive survey of deep learning for theorem proving by offering i) a thorough review of existing approaches across various tasks such as autoformalization, premise selection, proofstep generation, and proof search; ii) a meticulous summary of available datasets and strategies for data generation; iii) a detailed analysis of evaluation metrics and the performance of state-of-the-art; and iv) a critical discussion on the persistent challenges and the promising avenues for future exploration. Our survey aims to serve as a foundational reference for deep learning approaches in theorem proving, seeking to catalyze further research endeavors in this rapidly growing field.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here