A Switched View of Retinex: Deep Self-Regularized Low-Light Image Enhancement

3 Jan 2021  ·  Zhuqing Jiang, Haotian Li, Liangjie Liu, Aidong Men, Haiying Wang ·

Self-regularized low-light image enhancement does not require any normal-light image in training, thereby freeing from the chains on paired or unpaired low-/normal-images. However, existing methods suffer color deviation and fail to generalize to various lighting conditions. This paper presents a novel self-regularized method based on Retinex, which, inspired by HSV, preserves all colors (Hue, Saturation) and only integrates Retinex theory into brightness (Value). We build a reflectance estimation network by restricting the consistency of reflectances embedded in both the original and a novel random disturbed form of the brightness of the same scene. The generated reflectance, which is assumed to be irrelevant of illumination by Retinex, is treated as enhanced brightness. Our method is efficient as a low-light image is decoupled into two subspaces, color and brightness, for better preservation and enhancement. Extensive experiments demonstrate that our method outperforms multiple state-of-the-art algorithms qualitatively and quantitatively and adapts to more lighting conditions.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here