A Refined Equilibrium Generative Adversarial Network for Retinal Vessel Segmentation

26 Sep 2019  ·  Yukun Zhou, Zailiang Chen, Hailan Shen, Xianxian Zheng, Rongchang Zhao, Xuanchu Duan ·

Objective: Recognizing retinal vessel abnormity is vital to early diagnosis of ophthalmological diseases and cardiovascular events. However, segmentation results are highly influenced by elusive vessels, especially in low-contrast background and lesion region. In this work, we present an end-to-end synthetic neural network, containing a symmetric equilibrium generative adversarial network (SEGAN), multi-scale features refine blocks (MSFRB), and attention mechanism (AM) to enhance the performance on vessel segmentation. Method: The proposed network is granted powerful multi-scale representation capability to extract detail information. First, SEGAN constructs a symmetric adversarial architecture, which forces generator to produce more realistic images with local details. Second, MSFRB are devised to prevent high-resolution features from being obscured, thereby merging multi-scale features better. Finally, the AM is employed to encourage the network to concentrate on discriminative features. Results: On public dataset DRIVE, STARE, CHASEDB1, and HRF, we evaluate our network quantitatively and compare it with state-of-the-art works. The ablation experiment shows that SEGAN, MSFRB, and AM both contribute to the desirable performance. Conclusion: The proposed network outperforms the mature methods and effectively functions in elusive vessels segmentation, achieving highest scores in Sensitivity, G-Mean, Precision, and F1-Score while maintaining the top level in other metrics. Significance: The appreciable performance and computational efficiency offer great potential in clinical retinal vessel segmentation application. Meanwhile, the network could be utilized to extract detail information in other biomedical issues

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods