A System for Extracting Sentiment from Large-Scale Arabic Social Data
Social media data in Arabic language is becoming more and more abundant. It is a consensus that valuable information lies in social media data. Mining this data and making the process easier are gaining momentum in the industries. This paper describes an enterprise system we developed for extracting sentiment from large volumes of social data in Arabic dialects. First, we give an overview of the Big Data system for information extraction from multilingual social data from a variety of sources. Then, we focus on the Arabic sentiment analysis capability that was built on top of the system including normalizing written Arabic dialects, building sentiment lexicons, sentiment classification, and performance evaluation. Lastly, we demonstrate the value of enriching sentiment results with user profiles in understanding sentiments of a specific user group.
PDF Abstract