Paper

A Theoretical Perspective on Differentially Private Federated Multi-task Learning

In the era of big data, the need to expand the amount of data through data sharing to improve model performance has become increasingly compelling. As a result, effective collaborative learning models need to be developed with respect to both privacy and utility concerns. In this work, we propose a new federated multi-task learning method for effective parameter transfer with differential privacy to protect gradients at the client level. Specifically, the lower layers of the networks are shared across all clients to capture transferable feature representation, while top layers of the network are task-specific for on-client personalization. Our proposed algorithm naturally resolves the statistical heterogeneity problem in federated networks. We are, to the best of knowledge, the first to provide both privacy and utility guarantees for such a proposed federated algorithm. The convergences are proved for the cases with Lipschitz smooth objective functions under the non-convex, convex, and strongly convex settings. Empirical experiment results on different datasets have been conducted to demonstrate the effectiveness of the proposed algorithm and verify the implications of the theoretical findings.

Results in Papers With Code
(↓ scroll down to see all results)