A Theory of Emergent In-Context Learning as Implicit Structure Induction

14 Mar 2023  ·  Michael Hahn, Navin Goyal ·

Scaling large language models (LLMs) leads to an emergent capacity to learn in-context from example demonstrations. Despite progress, theoretical understanding of this phenomenon remains limited. We argue that in-context learning relies on recombination of compositional operations found in natural language data. We derive an information-theoretic bound showing how in-context learning abilities arise from generic next-token prediction when the pretraining distribution has sufficient amounts of compositional structure, under linguistically motivated assumptions. A second bound provides a theoretical justification for the empirical success of prompting LLMs to output intermediate steps towards an answer. To validate theoretical predictions, we introduce a controlled setup for inducing in-context learning; unlike previous approaches, it accounts for the compositional nature of language. Trained transformers can perform in-context learning for a range of tasks, in a manner consistent with the theoretical results. Mirroring real-world LLMs in a miniature setup, in-context learning emerges when scaling parameters and data, and models perform better when prompted to output intermediate steps. Probing shows that in-context learning is supported by a representation of the input's compositional structure. Taken together, these results provide a step towards theoretical understanding of emergent behavior in large language models.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here