A Theory of Usable Information Under Computational Constraints

We propose a new framework for reasoning about information in complex systems. Our foundation is based on a variational extension of Shannon's information theory that takes into account the modeling power and computational constraints of the observer. The resulting \emph{predictive $\mathcal{V}$-information} encompasses mutual information and other notions of informativeness such as the coefficient of determination. Unlike Shannon's mutual information and in violation of the data processing inequality, $\mathcal{V}$-information can be created through computation. This is consistent with deep neural networks extracting hierarchies of progressively more informative features in representation learning. Additionally, we show that by incorporating computational constraints, $\mathcal{V}$-information can be reliably estimated from data even in high dimensions with PAC-style guarantees. Empirically, we demonstrate predictive $\mathcal{V}$-information is more effective than mutual information for structure learning and fair representation learning.

PDF Abstract ICLR 2020 PDF ICLR 2020 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here