A Topic-aware Summarization Framework with Different Modal Side Information

19 May 2023  ·  Xiuying Chen, Mingzhe Li, Shen Gao, Xin Cheng, Qiang Yang, Qishen Zhang, Xin Gao, Xiangliang Zhang ·

Automatic summarization plays an important role in the exponential document growth on the Web. On content websites such as CNN.com and WikiHow.com, there often exist various kinds of side information along with the main document for attention attraction and easier understanding, such as videos, images, and queries. Such information can be used for better summarization, as they often explicitly or implicitly mention the essence of the article. However, most of the existing side-aware summarization methods are designed to incorporate either single-modal or multi-modal side information, and cannot effectively adapt to each other. In this paper, we propose a general summarization framework, which can flexibly incorporate various modalities of side information. The main challenges in designing a flexible summarization model with side information include: (1) the side information can be in textual or visual format, and the model needs to align and unify it with the document into the same semantic space, (2) the side inputs can contain information from various aspects, and the model should recognize the aspects useful for summarization. To address these two challenges, we first propose a unified topic encoder, which jointly discovers latent topics from the document and various kinds of side information. The learned topics flexibly bridge and guide the information flow between multiple inputs in a graph encoder through a topic-aware interaction. We secondly propose a triplet contrastive learning mechanism to align the single-modal or multi-modal information into a unified semantic space, where the summary quality is enhanced by better understanding the document and side information. Results show that our model significantly surpasses strong baselines on three public single-modal or multi-modal benchmark summarization datasets.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods