A topic-based sentence representation for extractive text summarization

In this study, we examine the effect of probabilistic topic model-based word representations, on sentence-based extractive summarization. We formulate the task of summary extraction as a binary classification problem, and we test a variety of machine learning algorithms, exploring a range of different settings... An wide experimental evaluation on the MultiLing 2015 MSS dataset illustrates that topic-based representations can prove beneficial to the extractive summarization process in terms of F1, ROUGE-L and ROUGE-W scores, compared to a TF-IDF baseline, with QDA-based analysis providing the best results. read more

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here