A Two-Stage Stochastic Programming Model for Car-Sharing Problem using Kernel Density Estimation

20 Sep 2019  ·  Xiaoming Li, Chun Wang, Xiao Huang ·

Car-sharing problem is a popular research field in sharing economy. In this paper, we investigate the car-sharing re-balancing problem under uncertain demands. An innovative framework that integrates a non-parametric approach - kernel density estimation (KDE) and a two-stage stochastic programming (SP) model are proposed. Specifically, the probability distributions are derived from New York taxi trip data sets by KDE, which is used as the input uncertain parameters for SP. Additionally, the car-sharing problem is formulated as a two-stage SP model which aims to maximize the overall profit. Meanwhile, a Monte Carlo method called sample average approximation (SAA) and Benders decomposition algorithm is introduced to solve the large-scale optimization model. Finally, the experimental validations show that the proposed framework outperforms the existing works in terms of outcomes.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here