Paper

A Two-Streamed Network for Estimating Fine-Scaled Depth Maps from Single RGB Images

Estimating depth from a single RGB image is an ill-posed and inherently ambiguous problem. State-of-the-art deep learning methods can now estimate accurate 2D depth maps, but when the maps are projected into 3D, they lack local detail and are often highly distorted. We propose a fast-to-train two-streamed CNN that predicts depth and depth gradients, which are then fused together into an accurate and detailed depth map. We also define a novel set loss over multiple images; by regularizing the estimation between a common set of images, the network is less prone to over-fitting and achieves better accuracy than competing methods. Experiments on the NYU Depth v2 dataset shows that our depth predictions are competitive with state-of-the-art and lead to faithful 3D projections.

Results in Papers With Code
(↓ scroll down to see all results)