A Unified Framework for Compositional Fitting of Active Appearance Models

2 Jan 2016  ·  Joan Alabort-i-Medina, Stefanos Zafeiriou ·

Active Appearance Models (AAMs) are one of the most popular and well-established techniques for modeling deformable objects in computer vision. In this paper, we study the problem of fitting AAMs using Compositional Gradient Descent (CGD) algorithms. We present a unified and complete view of these algorithms and classify them with respect to three main characteristics: i) cost function; ii) type of composition; and iii) optimization method. Furthermore, we extend the previous view by: a) proposing a novel Bayesian cost function that can be interpreted as a general probabilistic formulation of the well-known project-out loss; b) introducing two new types of composition, asymmetric and bidirectional, that combine the gradients of both image and appearance model to derive better conver- gent and more robust CGD algorithms; and c) providing new valuable insights into existent CGD algorithms by reinterpreting them as direct applications of the Schur complement and the Wiberg method. Finally, in order to encourage open research and facilitate future comparisons with our work, we make the implementa- tion of the algorithms studied in this paper publicly available as part of the Menpo Project.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here